Type: \(\displaystyle A^{1}_1\) (Dynkin type computed to be: \(\displaystyle A^{1}_1\))
Simple basis: 1 vectors: (1, 1, 1, 1)
Simple basis epsilon form:
Simple basis epsilon form with respect to k:
Number of outer autos with trivial action on orthogonal complement and extending to autos of ambient algebra: 0
Number of outer autos with trivial action on orthogonal complement: 0.
C(k_{ss})_{ss}: A^{1}_2
simple basis centralizer: 2 vectors: (0, 1, 0, 0), (0, 0, 1, 0)
Number of k-submodules of g: 16
Module decomposition, fundamental coords over k: \(\displaystyle V_{2\omega_{1}}+6V_{\omega_{1}}+9V_{0}\)
g/k k-submodules
idsizeb\cap k-lowest weightb\cap k-highest weightModule basisWeights epsilon coords
Module 11(0, -1, -1, 0)(0, -1, -1, 0)g_{-6}-\varepsilon_{2}+\varepsilon_{4}
Module 21(0, 0, -1, 0)(0, 0, -1, 0)g_{-3}-\varepsilon_{3}+\varepsilon_{4}
Module 31(0, -1, 0, 0)(0, -1, 0, 0)g_{-2}-\varepsilon_{2}+\varepsilon_{3}
Module 42(0, -1, -1, -1)(1, 0, 0, 0)g_{1}
g_{-9}
\varepsilon_{1}-\varepsilon_{2}
-\varepsilon_{2}+\varepsilon_{5}
Module 51(0, 1, 0, 0)(0, 1, 0, 0)g_{2}\varepsilon_{2}-\varepsilon_{3}
Module 61(0, 0, 1, 0)(0, 0, 1, 0)g_{3}\varepsilon_{3}-\varepsilon_{4}
Module 72(-1, -1, -1, 0)(0, 0, 0, 1)g_{4}
g_{-8}
\varepsilon_{4}-\varepsilon_{5}
-\varepsilon_{1}+\varepsilon_{4}
Module 82(0, 0, -1, -1)(1, 1, 0, 0)g_{5}
g_{-7}
\varepsilon_{1}-\varepsilon_{3}
-\varepsilon_{3}+\varepsilon_{5}
Module 91(0, 1, 1, 0)(0, 1, 1, 0)g_{6}\varepsilon_{2}-\varepsilon_{4}
Module 102(-1, -1, 0, 0)(0, 0, 1, 1)g_{7}
g_{-5}
\varepsilon_{3}-\varepsilon_{5}
-\varepsilon_{1}+\varepsilon_{3}
Module 112(0, 0, 0, -1)(1, 1, 1, 0)g_{8}
g_{-4}
\varepsilon_{1}-\varepsilon_{4}
-\varepsilon_{4}+\varepsilon_{5}
Module 122(-1, 0, 0, 0)(0, 1, 1, 1)g_{9}
g_{-1}
\varepsilon_{2}-\varepsilon_{5}
-\varepsilon_{1}+\varepsilon_{2}
Module 133(-1, -1, -1, -1)(1, 1, 1, 1)g_{10}
h_{4}+h_{3}+h_{2}+h_{1}
g_{-10}
\varepsilon_{1}-\varepsilon_{5}
0
-\varepsilon_{1}+\varepsilon_{5}
Module 141(0, 0, 0, 0)(0, 0, 0, 0)h_{2}0
Module 151(0, 0, 0, 0)(0, 0, 0, 0)h_{3}0
Module 161(0, 0, 0, 0)(0, 0, 0, 0)h_{4}-h_{1}0

Information about the subalgebra generation algorithm.
Heirs rejected due to having symmetric Cartan type outside of list dictated by parabolic heirs: 1
Heirs rejected due to not being maximally dominant: 10
Heirs rejected due to not being maximal with respect to small Dynkin diagram automorphism that extends to ambient automorphism: 10
Heirs rejected due to having ambient Lie algebra decomposition iso to an already found subalgebra: 0
Parabolically induced by 0
Potential Dynkin type extensions: A^{1}_2, 2A^{1}_1,